Algèbre et Arithmétique Effectives -07/10/25 Cours 5

Résordre des congruences linéaires

Soit ne Zo et soient a, b e Z.

On vert déterniner l'ensemble des entiers z qui satisfant la congruence

(n bow) d = SD

Exemple: Déterminer tous les entiers 2

32+4-4 = 6-4 (mod 7)

 $\begin{array}{c}
32 \equiv 2 \pmod{7} \\
0
\end{array}$

pocd (3,7) = 1

3 est invorsible mod 7

et l'inverse est 5

5.32 = 5.2 (mad 7)

2 = 3 (mod 7)

X'ensemble des solutions dans R

S= {7K+3: K ∈ Z4.

Un congrence lintaire n'a pas toijours de solutions. Allenhous Exemple: 22 = 3 mad a On wit que 4 ZE Z/1 = = 10, 1, 2, 39, 2 West pas une solution => la congruence n'aduet pas de solutions dons 72. Soient a, $n \in \mathbb{Z}$, n > 0. Soit d := pgcd(a,n). Alors Y be \mathbb{Z} , la congruence $05 = p \pmod{N}$ a une solution 2 E 72 si et seulement si Dem

Soit $b \in \mathbb{Z}$, La congrence az = b (mod v) admet me solution ZEZ (=>] Z, KEZ tels que O.Z-b=nK ⇒ ∃ s'ke \(\sigma \text{ for \overline{\sigma} \cdot \overline{\sigma} \overline{\sigma} \cdot \overline{\sigma} \overline{\sima} \overlin > pgcd (a,n) | b <=> d | b.

 $popcd(a,n)|b \Rightarrow b = \lambda d$, $\lambda \in \mathbb{Z}$ $antphi = q = 2 a \cdot 3ntp \cdot 3n = yq = p$

, vertisagent

1) Si paca (a, n) = 1, alors: $OS = OS' \pmod{n} \iff S = S' \pmod{n}$

2) Si
$$d = poch(a, n)$$
, olors:

 $0.2 \equiv 0.2$ (mod n) $\Leftrightarrow 2 \equiv 2$ (mod $\frac{n}{4}$).

Exemple: $2.2 \equiv 6$ (mod $2.2 \equiv 2$) (mod $2.$

Corollaire: Soient a, b $\in \mathbb{Z}$, $n \in \mathbb{Z}$ set d = pgcd(qn) λ' ensemble des solutions de l'équation $0.2 = b \pmod{n}$

est.

- · vide, si dtb.
- · un classe d'équialence madre n, si d/b.

Système de congruences linéaires

Soient $N_{1,--}$, N_{K} des entiers premiers entre eux deux à deux, $C-\bar{\alpha}-d$ paced $(N_{1},N_{1})=1$, $\forall i\neq j$.

Soient $a_1, ..., a_k \in \mathbb{Z}$.

On consider le système de conquences linéaires

$$\begin{cases} \frac{2}{2} \equiv O^{2} \pmod{N^{2}} \\ \frac{1}{2} \equiv O^{2} \pmod{N^{2}} \end{cases}$$

su so sat

2' ensemble des solutions dans \mathbb{Z} de (*) est non vide et c'est un classe d'équalence module $N = N_1 - N_K$.

uis G

L'existence d'au moins un solution est donnée par l'algorithme suivant, qui renvoire le représentant cononique de la classe d'équialence modile.

Algorithme: Resterchinois ((a1,-,ax), (n1,-,nx)) Entrées: deux K-uplets d'entiers (a,-, ax) et (n,-, nx) tels que pacd(ni,nj)=1, Yi+j. Sortie: Un entier Z, O < Z < N, à N= tt ni tel que 2 = 0: (mod n:) + i=1,-, K 1. N < TT n: N: = N (division exacte) 2. ¥ 1=1, __, K: U: - InverseMod (Ni, ni)

(cela existr car popul/lini)=1 3. \forall i=1, ___, \kappa_: 4. Remoyer \(\subseteq \alpha_i \cdot \omega_i \cd Exemple Z = 4 mod 7 Z = 4 mod 7 Z = 5 mod 41 Z = 3 mod 5 D'après le théorème l'existe une onique solution module N=5.7.4 = 385. $N_1 = N/_2 = 55$ $N_2 = N_{AA} = 35$ $N_3 = N_5 = 77$ Maintenant je dois résadre:

U3. 77 = 1 (mad 5) (=> Us.2 = 1 (mad 5)=3 On collule: 4.6.55 + 5.6.35 + 3.3.77 = 3063 mod 385 = 368 (mad 385) Suite de la demonstration On montre d' abord que $Z = \sum_{i=1}^{K} \Omega_i \cdot U_i \cdot N_i$ est bien un solution du système (*). Par construction Ui. Ni = 1 (mod vi), Yi=1,-, K. De plus, 4 j = 1, n: /N; = 1, ne Donc Y ;=1,-, K on a: $Z = \sum_{j=1}^{K} \alpha_{j} \cup_{j} N_{j} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{j} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{j} + \alpha_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{i} \cup_{i} N_{i} \cup_{i} N_{i} \cup_{i} N_{i} = \sum_{j=1,-,K} \alpha_{j} \cup_{i} N_{i} \cup_{i} N_{i} \cup_{i} N_{i} \cup_$ Donc 2 est un solution de (x). On mantre maintenant que toit élément 2' dans la classe de 2 mobile N'est oussi un Solution du Système. Z' = Z (mod N) (=)] KEZ t.q. Z'-Z+NK= $= S + V! N! K \Rightarrow A != 1'-'K ' 5_1 = 5 + V! N! K =$

 \equiv 5 (mod Ni) \equiv 0: (mod Ni)

If reste à montrer que si z' est une solution de (*) alors $z' \equiv z$ (mod N),

Si z' est une solution de (*) alors $\forall i=1,..., K$ $z' \equiv \Omega_i$ (mod n_i) $\equiv z$ (mod n_i) \Longrightarrow $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$ $\forall i=1,..., K$ $n_i \mid z'-z \Longrightarrow \forall n_i \mid z'-z \Longrightarrow$

D