Algelore	et Arithm	stique Eq	ectives -	23/09/25 cours 3
Nompres	premiers			
Rappel:	Y NEZ	, 1/n	et n/n.	
<u>Del</u> : Un (≥ c di)	nomon of guil resurs et cui	premier 1582ede 15ers dis même	est un en tractement	hier naturl deux positifs:
	t dit col		hi n, ext boz	
Attention:	o et - premiexs	(vi des	r pas d	es hombres Composés).
Méorème	Jonda me	rbal de 1	2' arithméti	que
Alors n	2 / N 7 peut s'éc + Pe1 P	wit sous		
où P1,, ex	- PK sout Sout des	des hour		et distincts et esitifs. C'ordre des
Remarque	. Si n=	te => K	= 0 (rema est Egzl	andrer dr
	n (Lemme a, b, c ∈ =1. Alors			c et

Dém

Puisque paged (a,b)=1, alors $\exists v,v \in \mathbb{Z}$ tels que

00+b1= 8

 $C \cdot (au + bv) = C \cdot \lambda$

acu + bcv

On remarque que a lacu et a locv =>

=> a | acu+ bcv = c => a/c.

Proposition: Soit p un nombre premier et soient $a,b \in \mathbb{Z}$.

Si $P \mid ab = > P \mid a \mid a \mid b \mid b$.

Dém

Si pla alors l'évancé est voi.

Si pta, alors pgcd (P,a) = 1 => P/b.

Plap Cemme de Goiss

Démonstration du théorème

Sours perte de généralité on peut supposer n>0(si n<0, alors n=-(-n))

· Existence de la factorisation

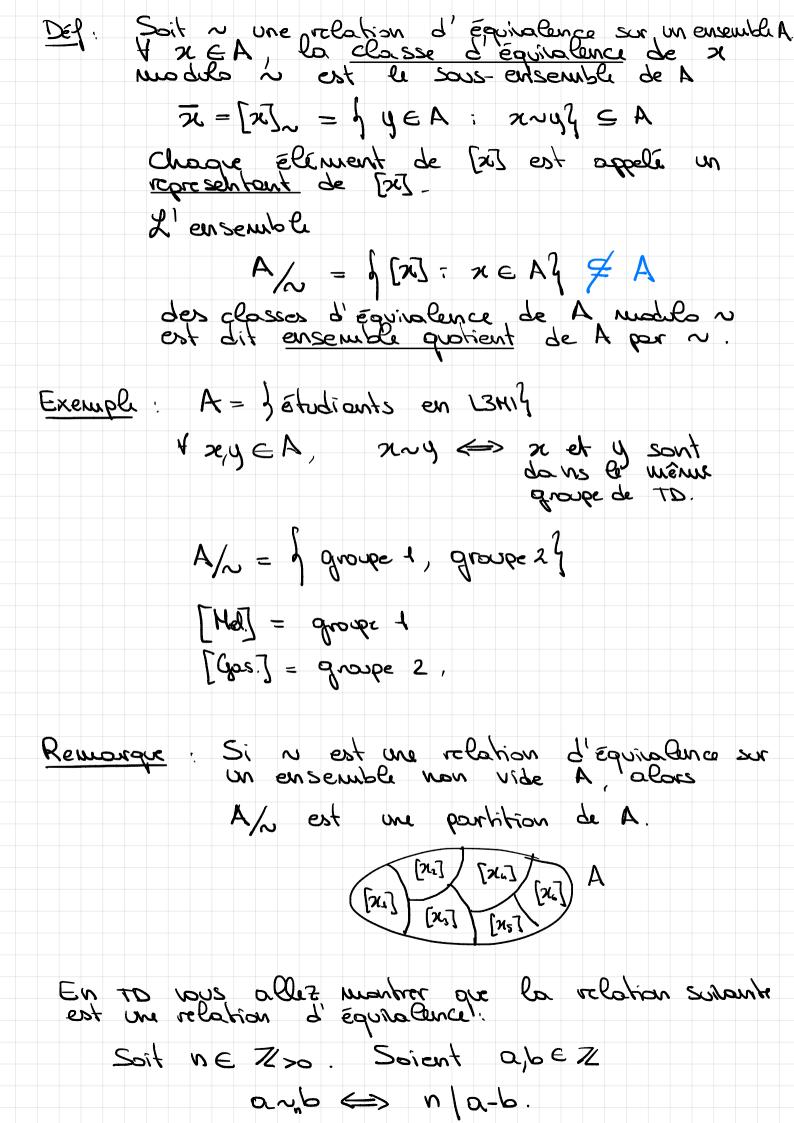
On procède por récurrence fonte.

Si n=1, l'énoncé est moi (1 est produit de zero nombres premiers)

Soit 1/24. On suppose que chaque entier O< M< N peut s'écrire comme produit de nombres premiers.

Si n'est premier, alors l'évancé est voi. Si n n'est pas primier alors n est composé, donc I a, b ∈ Z, o < a, b < n tels que $N = \alpha \rho$. Par hypothèse de récurence, a et b s'écrivent comme produit de puissancés de nombres premiers, donc cela vont aussi pour n. · Unicité de la factorisation On vert wanter que si n = p --- P = q --- qt Où P_i , Q_i sont des nombres premiers P_0 forcément distincts, olors S=t et $(P_1,-,P_s)$ est une permitation de $(Q_1,-,Q_t)$. On procède par récurrence sur s $Si S=0 \Rightarrow N=1 \Rightarrow t=0$ et l'évancé est voi Supposons que l'évancé est voir pour s-1. On soit que $\nu = b' - b' = d' - b' \tag{*}$ On remarque que P1/P1-- Ps et P1--P5= 91-96 => P1/91--9t => 3 1=j=t tel que Proposition Procedent $R_1/Q_2 \implies R_1 = Q_2$ Promocs Danc, en divisant (*) à gandre par p, et à

queix box di on oppient: P2--- P3 = 91--- 9j-1 9j+1--- 9t S-1 termes Par hypothèse de récurrence 5-1 = t-1 et (P2,--, P5) est une permutation de (91,-, 9,-1, 9,1,--9) Donc 5=t et (P1,-, P5) est un permitation de (P1,-, Pt). Entiers models n Dans les applications en cryptographie et théorie des codes on travaille souvent avec des sous-ensembles finis de Z. Rappels: Relation d'équialence Del: Soit A un ensemble.
Une relation binaire ~R sur A est un sous-ensemble R de AxA. Si (a,b) ER, on note and b Une relation binaire n sur A est une relation d'équiraleurce si: 1) ~ est reflexive: a~a, Y a CA 2) ~ est symétrique: Y a, b EA, si a ~ b 3) ~ est transitive: Y a,b,c EA, si and et brc, alors arc A = } étudionts en 13419 Exemple V 2,y ∈ A, 2ny ⇒ 2 et y sont da ns & wênus qroupe de TD.



Def: Soit
$$n \in \mathbb{Z}_{>0}$$

Soient $a,b \in \mathbb{Z}$
On dit que a est congruent à b mad n
et on écrit
 $a \equiv b \pmod{n}$
Si $n \mid a-b$.
Le congruence.

Exemples

1)
$$N = 1$$
. On water N_1 la relation de conquence model 1. $3 = 5$ mod 1? Oui car $1/3-5$.

2)
$$N=2$$
. On note N_2 la relation de congruence modelo 2. $Q=b$ mod $Q=b$ $Q=b$

$$\begin{bmatrix} 1 \end{bmatrix}_{N_2} = \int \alpha \in \mathbb{Z} : \quad 0 = 1 \text{ wod } 2 \text{ } 1 = 1$$

$$= \int \alpha \in \mathbb{Z} : \quad 2 |\alpha - 1| = 1$$

=
$$\int \Omega \in \mathbb{Z}$$
: $\exists K \in \mathbb{Z} + q \cdot \Omega - 1 = 2K$ $\int \Omega \in \mathbb{Z}$: $\exists K \in \mathbb{Z} + q \cdot \Omega = 2K + 4$ $\int enhiers impairs?$

$$\mathbb{Z}/N_2 = \int [0]_{N_2}, [4]_{N_2}$$

Def: L'ensemble des classes d'équialence pour la relation de conquence modé n'est

Notation: nZ:= fnK, KEZq.