LOGIC IMPLICATION

Recall

A function f is *differentiable* at a if f'(a) exists, i. e. if

If *f* is differentiable at *a* then *f* is continuous at *a*

f is differentiable at a \downarrow f is continuous at a

$P \Rightarrow Q$

P = «*f* is differentiable at *a* »

$\mathbf{Q} = \ll f$ is continuous at $a \gg$

$P \Rightarrow Q$

P = Student X is in CHE 217 on MW at 12:30pm

Q = Student X is a calculus student

Is this implication true? YES!

Question:

If $P \Rightarrow Q$ is true, then what can we say about:

$\begin{array}{l} \text{not } Q \Rightarrow \text{not } P & (\text{contrapositive}) \\ Q \Rightarrow P & (\text{converse}) \end{array}$

P = Student X is in CHE 217 on MW at 12:30 Q = Student X is a calculus student

Is it true that: not $Q \implies$ not P? Yes!

P = Student X is in CHE 217 on MW at 12:30 Q = Student X is a calculus student

Is it true that: $Q \implies P$? **NO!**

Counterexample: each student in sections 2,4,5,6,7,etc. of calculus is a calculus student who is not in CHE 217 on MW at 12:30pm.

Another example

TRUE

Another example

$\frac{not}{insect} \longrightarrow not$

TRUE

Another example

insect \Longrightarrow

counterexample

FALSE!

Recap!

The implication $\mathbf{P} \Rightarrow \mathbf{Q}$ is true when every time the statement P is true, then also the statement Q is true. Hence:

- If you want to show that the implication P ⇒Q is true, you need a proof;
- If you want to show that the implication P ⇒Q is false you need a counterexample: this means that you need an example of something that verifies P but does not verify Q (indeed in this case P will be true, while Q will be false).

Now it's your turn!

Let *n* be an integer. Consider the following implication:

If *n* is even then n^2 is even.

Is it true? Yes!

Now it's your turn!

Let *n* be an integer.

Consider now the **converse** of the previous implication:

If n^2 is even then *n* is even.

Is it true? Yes

An example of double implication

We have proven that:

For all integers n, n^2 is even **if and only if** n is even.

$P \Leftrightarrow Q$

P = The final grade of student X is A Q = The final grade of student X is more than 90%

All the definitions are *« if and only if »*

Ex: A function f is continuous at a if (and only if) $\lim_{x\to a} f(x) = f(a)$