Géométrie et Polynômes

Guillemette Chapuisat

guillemette.chapuisat@univ-amu.fr

voir aussi le site http://www.aiezzi.it/enseignement/geometrie.html

Licences de Mathématiques et d'Informatique, 1er semestre 2016-2017

Chapitre 2

Nombres complexes

I. Forme algébrique

1. Parties réelles et imaginaires

Définition 2.1

Les nombres complexes sont les nombres de la forme z = a + ib avec $a, b \in \mathbb{R}$ et i vérifiant la relation $i^2 = -1$. L'ensemble des nombres complexes est noté \mathbb{C} .

Remarque: On a donc $a + ib = \tilde{a} + i\tilde{b}$ si et seulement si $a = \tilde{a}$ et $b = \tilde{b}$.

Définition 2.2

Soit $z = a + ib \in \mathbb{C}$ avec a et $b \in \mathbb{R}$.

On dit que a est la partie réelle de z, on note a = Re(z), et b la partie imaginaire de z, on note b = Im(z).

On dit que z est un réel si b=0 et que z est un imaginaire pur si a=0 et $b\neq 0$.

Soit \mathcal{P} un plan géométrique rapporté à un repère orthonormé direct $\mathcal{R} = (0; \overrightarrow{1}, \overrightarrow{J})$.

Définition 2.3

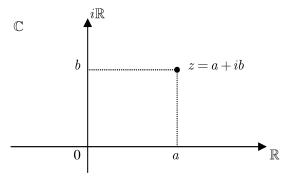
On appelle point d'affixe $z \in \mathbb{C}$ le point M de coordonnées (a, b) avec a = Re(z) et b = Im(z). On note M(z) pour signifier que M est le point d'affixe z.

De même, on définit l'affixe du vecteur $u = \begin{pmatrix} a \\ b \end{pmatrix}$ comme le nombre complexe, z = a + ib.

Pour les points $A(z_A)$ et $B(z_B)$, l'affixe du vecteur \overrightarrow{AB} est donc z_B-z_A .

Remarque:

Par la notion d'affixe, à tout nombre complexe correspond un point du plan et à tout point correspond un nombre complexe. Cela permet de visualiser $\mathbb C$ tel un plan :



Définition 2.4

Soit z = a + ib et z' = a' + ib'. On définit la somme et le produit par

$$z + z' = (a + a') + i(b + b')$$
 et $zz' = (aa' - bb') + i(ab' + a'b)$.

On note -z = (-a) + i(-b) et on définit donc ainsi la soustraction entre deux nombres complexes par z - z' = z + (-z').

Enfin, si $z \neq 0$, on définit l'inverse de z par $\frac{1}{z} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2} \in \mathbb{C}$. C'est l'unique complexe tel que $z \frac{1}{z} = 1$. Ceci permet de définir la division entre deux nombres complexes par $\frac{z'}{z} = z' \frac{1}{z}$.

Proposition 2.5

On retrouve les mêmes propriétés de l'addition et de la multiplication que dans \mathbb{R} à savoir, associativité, commutativité, distributivité, etc.

Proposition 2.6

Pour z et $z' \in \mathbb{C}$, on a

$$\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z'), \quad \operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z').$$

Si $\lambda \in \mathbb{R}$, on a $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$ et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Démonstration : Ecrire z = a + ib et z' = a' + ib' et calculer !

Remarque: Attention, pour z et $z' \in \mathbb{C}$ quelconques, on n'a pas $\operatorname{Re}(zz') = \operatorname{Re}(z)\operatorname{Re}(z')$ et $\operatorname{Im}(zz') = \operatorname{Im}(z)\operatorname{Im}(z')!!!$ La formule est en fait bien plus compliquée (et inutile) : $\operatorname{Re}(zz') = \operatorname{Re}(z)\operatorname{Re}(z') - \operatorname{Im}(z)\operatorname{Im}(z')$ et $\operatorname{Im}(zz') = \operatorname{Re}(z)\operatorname{Im}(z') + \operatorname{Im}(z')\operatorname{Re}(z)$.

2. Conjugué

Définition 2.7

Soit $z = a + ib \in \mathbb{C}$ avec a et $b \in \mathbb{R}$. Le conjugué de z est le nombre $\bar{z} = a - ib$.

Proposition 2.8

Pour z et $z' \in \mathbb{C}$, on a

$$\overline{z+z'} = \overline{z} + \overline{z'}, \quad \overline{zz'} = \overline{z}\overline{z'} \quad \text{et} \quad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}} \text{ si } z \neq 0.$$

Démonstration : Ecrire z = a + ib et z' = a' + ib' et calculer !

Proposition 2.9 (Quelques formules pour les calculs)

Pour $z \in \mathbb{C}$, on a

$$z + \overline{z} = 2 \operatorname{Re}(z) \in \mathbb{R}$$
 et $z - \overline{z} = 2i \operatorname{Im}(z)$,
 $z\overline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \in \mathbb{R}$.

Démonstration: En effet, si z = a + ib, $\bar{z} = a - ib$ d'où les résultats en calculant.

II. Calculs algébriques

1. Sommes et produits

Notation 2.10

On introduit les notations suivantes : Pour a_1, \ldots, a_n des nombres complexes,

$$\sum_{k=p}^{n} a_k = a_p + a_{p+1} + \dots + a_n \quad \text{et} \quad \prod_{k=p}^{n} a_k = a_p a_{p+1} + \dots + a_n.$$

La somme $\sum_{k=1}^{n} a_k$ désigne la même chose que $\sum_{j=1}^{n} a_j$. L'indice de sommation (k ou j ici) est une variable muette.

Exemple:

$$1 + 2 + 3 + \dots + n = \sum_{k=1}^{n} k$$

$$10 + 15 + 20 + \dots + 5p = \sum_{k=2}^{p} 5k$$

$$-10 - 8 - 6 - 4 - 2 + 2 + 4 + 6 + 8 + 10 = \sum_{k=-5}^{5} 2k$$

$$e^{x} + e^{2x} + \dots + e^{nx} = \sum_{k=1}^{n} e^{kx}$$

$$1 \times 2 \times 3 \times 4 \times \dots \times n = \prod_{k=1}^{n} k$$

Proposition 2.11

Soit a_1, \ldots, a_n et b_1, \ldots, b_n des nombres complexes. Par commutativité,

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \quad \text{et} \quad \prod_{k=1}^{n} (a_k b_k) = \prod_{k=1}^{n} a_k \prod_{k=1}^{n} b_k$$

Proposition 2.12 (Sommation par paquets)

Soit a_1, \ldots, a_n des nombres complexes. Par associativité, pour tout $p \in \{0, \ldots, n-1\}$, on a

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{p} a_k + \sum_{k=p+1}^{n} a_k.$$

Exemple: Somme télescopique :

$$\sum_{k=p}^{q} (a_{k+1} - a_k) = \sum_{k=p}^{q} a_{k+1} - \sum_{k=p}^{q} a_k = \sum_{j=p+1}^{q+1} a_j - \sum_{k=p}^{q} a_k = a_{q+1} - a_p$$

Proposition 2.13

Soit a_1, \ldots, a_n des nombres complexes. Soit $\lambda \in \mathbb{C}$. Par distributivité, on a

$$\sum_{k=0}^{n} \lambda a_k = \lambda \sum_{k=0}^{n} a_k.$$

Remarque: Attention, on ne peut rien dire de $\sum_{k=0}^{n} a_k b_k$!

2. Formule de la somme géométrique

Proposition 2.14

Soit
$$a \in \mathbb{C} \setminus \{1\}$$
. Alors $\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$.

Démonstration: On a $(1-a)\sum_{k=0}^n a^k = \sum_{k=0}^n (a^k - a^{k+1}) = 1 - a^{n+1}$ car c'est une somme télescopique. D'où le résultat.

3. Formule du binôme

Définition 2.15

Soient $n \in \mathbb{N}^*$ et $p \in \{1, \dots, n\}$.

On note $n! = n(n-1) \dots 2 \times 1$ et 0! = 1. On dit n factoriel ou factoriel n.

Le coefficient binomial est défini par $\binom{n}{p} = \frac{n!}{(n-p)!p!}$. On le note aussi C_n^p .

Par convention, on note $\binom{n}{p} = 0$ si $p \notin \{0, \dots, n\}$.

Proposition 2.16

• Formule du triangle de Pascal :

$$\forall n \in \mathbb{N}^* \ \forall p \in \mathbb{N} \quad \binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$

n P	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Le triangle de Pascal

•
$$\binom{n}{p} = \binom{n}{n-p}$$

• $p\binom{n}{p} = n\binom{n-1}{p-1}$.

Proposition 2.17 (Formule du binôme de Newton)

Pour tout x et $y \in \mathbb{C}$ et pour tout $n \in \mathbb{N}$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Démonstration : Par récurrence sur $n \in \mathbb{N}$ avec la formule du triangle de Pascal.

Remarque: On rappelle que $(x-y)^n = (x+(-y))^n$ et que $(-1)^n = 1$ si n est pair et -1 si n est impair, la formule ci-dessus permet donc de développer aussi les différences!

Exemple:

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n.$$

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = (1-1)^n = 0 \text{ si } n \ge 1.$$

$$\sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n.$$

Proposition 2.18

Soient a et b des nombres réels. Alors $a^2 - b^2 = (a - b)(a + b)$.

III. Forme exponentielle

1. L'exponentielle complexe

Notation 2.19

On définit l'**exponentielle complexe** d'un nombre réel $\theta \in \mathbb{R}$ par $e^{i\theta} = \cos \theta + i \sin \theta$ pour tout $\theta \in \mathbb{R}$.

Exemple:

$$e^{i0} = 1$$
, $e^{i\pi} = -1$, $e^{i\frac{\pi}{2}} = i$, $e^{2i\pi} = 1$.

Proposition 2.20

Soit $\theta \in \mathbb{R}$. On a les propriétés suivantes :

- L'exponentielle complexe est 2π -périodique, c'est à dire que pour tout $k \in \mathbb{Z}$, $e^{i\theta} = e^{i(\theta + 2k\pi)}$.
- $\operatorname{Re}(e^{i\theta}) = \cos\theta \ et \ \operatorname{Im}(e^{i\theta}) = \sin\theta.$
- Le conjugué de $e^{i\theta}$ est $e^{-i\theta}$.

Démonstration: Trivial!

Proposition 2.21 (Formule d'Euler)

Pour
$$\theta \in \mathbb{R}$$
, on a
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad et \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Démonstration: Immédiate d'après la définition.

Exemple: Linéarisation de sinus et cosinus.

Si on souhaite linéariser $\cos^3(\theta)$, c'est à dire l'exprimer en fonction de $\cos(\lambda\theta)$ et de $\sin(\mu\theta)$ mais sans puissance (pour intégrer par exemple), on écrit

$$\begin{split} \cos^3(\theta) &= \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^3 \text{ d'après la formule d'Euler} \\ &= \frac{1}{8}(e^{3i\theta} + 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} + e^{-3i\theta}) \text{ d'après la formule du binôme} \\ &= \frac{1}{4}\left(\frac{e^{3i\theta} + e^{-3i\theta}}{2} + 3\frac{e^{i\theta} + e^{-i\theta}}{2}\right) \text{ en réunissant les puissances "similaires"} \\ &= \frac{1}{4}(\cos(3\theta) + 3\cos(\theta)) \text{ d'après la formule d'Euler.} \end{split}$$

Proposition 2.22

Pour tous nombres θ et θ' , on a $e^{i\theta}e^{i\theta'}=e^{i(\theta+\theta')}$.

Démonstration: D'après les règles sur les sommes de cos et sin.

Remarques:

• En pratique, on retrouve les formules sur le cosinus ou le sinus d'une somme à partir de cette formule plus facile à retenir!

$$\cos(a+b) = \operatorname{Re}\left(e^{i(a+b)}\right) = \operatorname{Re}\left(e^{ia}e^{ib}\right)$$
$$= \operatorname{Re}\left((\cos a + i\sin a)(\cos b + i\sin b)\right)$$
$$= \cos a\cos b - \sin a\sin b.$$

• Si $z=e^{i\theta}$ avec $\theta\in\mathbb{R}$, on a $\bar{z}=e^{-i\theta}$. Donc $z\bar{z}=e^{i\theta}e^{-i\theta}=e^{i0}=1$ donc $\bar{z}=\frac{1}{z}$.

Théorème 2.23 (Formule de Moivre)

Pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, on a $(e^{i\theta})^n = e^{in\theta}$. On en déduit donc la formule de Moivre : $(\cos x + i\sin x)^n = \cos(nx) + i\sin(nx).$

Exemple: Pour exprimer $\cos(2x)$ en fonction de $\cos x$ et $\sin x$, on utilise la formule de Moivre avec n=2:

$$(\cos x + i\sin x)^2 = \cos^2 x - \sin^2 x + 2i\cos x\sin x = \cos(2x) + i\sin(2x)$$

donc $\cos(2x) = \cos^2 x - \sin^2 x$ et $\sin(2x) = 2\cos x \sin x$ par identification de la partie réelle et de la partie imaginaire.

2. Module et argument

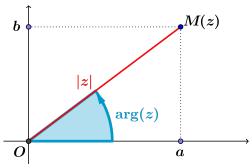
Définition 2.24

Le module d'un nombre complexe z = a + ib est définie bpar $\rho = \sqrt{a^2 + b^2} \ge 0$ et noté |z|.

L'argument d'un nombre complexe $z = a + ib \neq 0$ est défini modulo 2π par $\theta \in \mathbb{R}$ tel que

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$$
 et $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$

et noté $\arg z$.



Remarque: Pour un nombre réel, le module et la valeur absolue coïncide, il n'y a donc pas de problème de notation.

Proposition 2.25

Par définition de l'argument et du module, tout nombre complexe non nul peut s'écrire de manière unique comme le produit de son module par l'exponentielle de son argument : z = $|z|e^{i\arg z}$.

On peut donc identifier module et argument, c'est à dire que : $\rho e^{i\theta} = \tilde{\rho} e^{i\tilde{\theta}}$ si et seulement si $\rho = \tilde{\rho}$ et $\theta \equiv \tilde{\theta}$ [2 π].

Proposition 2.26

Soit $z \in \mathbb{C}^*$. On a les propriétés suivantes :

• z est réel ssi arg z = 0 $[\pi]$.

Démonstration: D'après la définition.

- z est imaginaire pur ssi $\arg z = \frac{\pi}{2}$ $|z| = 1 \Leftrightarrow z = e^{i\theta}$ pour un $\theta \in \mathbb{R}$. $z\overline{z} = |z|^2$ et $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Démonstration: D'après la définition.

Proposition 2.27

Soient z et z' deux nombres complexes. On a

$$|zz'| = |z||z'|, \quad |z^n| = |z|^n, \quad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}, \quad |\overline{z}| = |z|, \quad |-z| = |z|,$$

$$\arg(zz') = \arg z + \arg z' \quad [2\pi], \quad \arg(z^n) = n \arg z \quad [2\pi],$$

$$\arg\left(\frac{z}{z'}\right) = \arg z - \arg z' \quad [2\pi], \quad \arg\overline{z} = -\arg z \quad [2\pi],$$

$$\arg(-z) = \arg z + \pi \quad [2\pi].$$

Démonstration: En écrivant $z = \rho e^{i\theta}$ et $z' = \rho' e^{i\theta'}$, on a $zz' = \rho \rho' e^{i\theta} e^{i\theta'} = \rho \rho' e^{i(\theta+\theta')}$ d'où les premières formules en identifiant modules et arguments. Les autres formules se démontrent de même.

26

Remarques:

- Attention, on ne peut rien dire de arg(z + z')!
- Attention aux divisions de modulo, si arg $z^2 = \theta$, alors arg $z = \frac{\theta}{2}$

Proposition 2.28 (Inégalité triangulaire)

Soient z et $z' \in \mathbb{C}$. Alors $|z + z'| \le |z| + |z'|.$

Démonstration : Pour z et $z' \in \mathbb{C}$, on calcule que $|z+z'|^2 = |z|^2 + |z'|^2 + 2\operatorname{Re}(z\bar{z}')$ mais $\operatorname{Re}(z\bar{z}') \leq |z\bar{z}'| = |z||z'| = |z||z'|$ donc $|z+z'|^2 \leq |z|^2 + |z'|^2 + 2|z||z'| = (|z|+|z'|)^2$. D'où le résultat en prenant la racine carrée (car les deux nombre sont positifs).

Corollaire 2.29 (Inégalité triangulaire inversée)

Soient z et $z' \in \mathbb{C}$. Alors

$$||z| - |z'|| \le |z - z'|.$$

Démonstration: Démonstration similaire au cas réel.

3. Éléments de géométrie du plan complexe

Proposition 2.30

Pour un vecteur u d'affixe $\rho e^{i\theta}$, on a $\rho = ||u||$ et $(\overrightarrow{i}, u) \equiv \theta [2\pi]$.

Démonstration: Il suffit de calculer!

Proposition 2.31

Soient $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$ quatre points du plan complexe. On suppose $A \neq B$ et $C \neq D$.

1.
$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_B - z_A}\right);$$

2.
$$A, B, C, D$$
 sont alignés ssi $\frac{z_D - z_C}{z_B - z_A} \in \mathbb{R}$;

3.
$$\overrightarrow{AB} \perp \overrightarrow{CD}$$
 ssi $\frac{z_D - z_C}{z_B - z_A}$ est imaginaire pur.

Démonstration: D'après les règles de calcul pour l'argument, on a

$$\arg\left(\frac{z_D-z_C}{z_B-z_A}\right)=\arg(z_D-z_C)-\arg(z_B-z_A)=(\overrightarrow{\imath},\overrightarrow{CD})-(\overrightarrow{\imath},\overrightarrow{AB})=(\overrightarrow{\imath},\overrightarrow{CD})+(\overrightarrow{AB},\overrightarrow{\imath})=(\overrightarrow{AB},\overrightarrow{CD}).$$

Les points suivants découle clairement de cette égalité.

IV. Transformations du plan

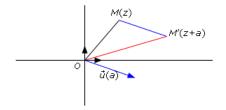
Définition 2.32

Une transformation du plan est une bijection du plan \mathbb{R}^2 dans lui-même. Un complexe pouvant être interprété géométriquement comme l'affixe d'un point du plan \mathbb{R}^2 , à toute bijection $f: \mathbb{C} \to \mathbb{C}$, on peut faire correspondre une transformation du plan et réciproquement.

1. Translation

Définition 2.33

Une translation de vecteur $u \in \mathbb{R}^2$ est une application $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que $\overrightarrow{MM'} = u$ pour $M \longmapsto T(M) = M'$ tout $M \in \mathbb{R}^2$.



Proposition 2.34

Si le vecteur $u \in \mathbb{R}^2$ a pour affixe $a \in \mathbb{C}$, la translation de vecteur u s'écrit en terme d'affixe comme $T: \mathbb{C} \longrightarrow \mathbb{C}$. $z \longmapsto z' = z + a$

Démonstration: En effet, si M est d'affixe z, M' d'affixe z' et u d'affixe a, la relation $\overrightarrow{MM'} = u$ s'écrit z' - z = a c'est à dire z' = z + a.

Méthode 4 (Reconnaître une translation)

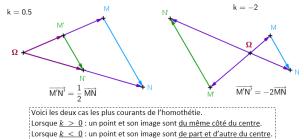
- 1. Une translation n'a aucun point fixe donc l'équation z=f(z) ne doit pas avoir de solution.
- 2. En calculant f(z) z, on trouve un nombre complexe constant, c'est l'affixe du vecteur de la translation.

Exemple: On considère la transformation du plan complexe définie par $f(z)=z+\frac{1}{1+i\sqrt{3}}$. C'est une translation de vecteur u d'affixe $\frac{1}{1+i\sqrt{3}}=\frac{1}{2}e^{-i\frac{\pi}{3}}$.

2. Homothétie

Définition 2.35

Une homothétie de centre Ω et de rapport $k \in \mathbb{R}^*$ est une transformation du plan $H: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que $M \longmapsto H(M) = M'$ $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$ pour tout $M \in \mathbb{R}^2$.



Proposition 2.36

L'homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbb{R}^*$ s'écrit en terme d'affixe comme $H: \mathbb{C} \longrightarrow \mathbb{C}$. En particulier, $z' - \omega = k(z - \omega)$. $z \longmapsto z' = \omega + k(z - \omega)$

Démonstration: En effet, si M est d'affixe z, M' d'affixe z' et Ω d'affixe ω , la relation $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$ s'écrit $z' - \omega = k(z - \omega)$ c'est à dire $z' = \omega + k(z - \omega)$.

Méthode 5 ($Reconnaître\ une\ homothétie$)

On considère $f:\mathbb{C}\to\mathbb{C}$ et on cherche a savoir si c'est l'expression d'une homothétie.

28

1. Une homothétie admet un unique point fixe (sauf celle de rapport 1, mais elle a peu

d'intérêt) donc l'équation z=f(z) doit avoir un unique solution. La solution sera notée ω , c'est l'affixe du centre de l'homothétie.

2. On "calcule" alors $\frac{f(z)-\omega}{z-\omega}$ et on doit trouver un nombre réel constant k, c'est le rapport de l'homothétie.

Exemple: On considère la transformation du plan complexe définie par f(z) = -2z + 2 + 4i. On commence par chercher si f a des points fixes :

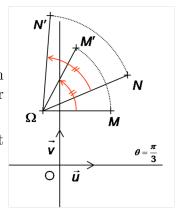
$$f(z) = z \Leftrightarrow -2z + 2 + 4i = z \Leftrightarrow z = \frac{2}{3} + i\frac{4}{3}.$$

Il y a donc bien un unique point fixe Ω d'affixe $\omega = \frac{2}{3} + i\frac{4}{3}$ On calcule alors $f(z) - \omega = -2z + 2 + 4i - (\frac{2}{3} + i\frac{4}{3}) = -2z + \frac{4}{3} + i\frac{8}{3} = -2(z - \frac{2}{3} - i\frac{4}{3}) = -2(z - \omega)$. On a donc bien une homothétie de centre Ω et de rapport -2.

3. Rotations

Définition 2.37

Une rotation de centre Ω et d'angle $\theta \in \mathbb{R}$ est une transformation du plan $R: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que $\Omega M' = \Omega M$ pour $M \longmapsto R(M) = M'$ tout $M \in \mathbb{R}^2$ et l'angle orienté $(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) \equiv \theta$ [2π] pour tout $M \neq \Omega$.



Proposition 2.38

La rotation de centre $\Omega(\omega)$ et d'angle $\theta \in \mathbb{R}^*$ s'écrit en terme d'affixe comme $R: \mathbb{C} \longrightarrow \mathbb{C}$. En particulier, $z' - \omega = e^{i\theta}(z - \omega)$. $z \longmapsto z' = \omega + e^{i\theta}(z - \omega)$

Démonstration: En effet, si M est d'affixe z, M' d'affixe z' et Ω d'affixe ω , la relation $\Omega M' = \Omega M$ s'écrit $|z' - \omega| = |z - \omega|$ ou encore si $z \neq \omega \left| \frac{z' - \omega}{z - \omega} \right| = 1$. Et la relation $(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) \equiv \theta$ [2π] s'écrit $\arg\left(\frac{z' - \omega}{z - \omega}\right) \equiv \theta$ [2π] donc $\frac{z' - \omega}{z - \omega} = e^{i\theta}$ et on obtient bien les formules ci-dessus.

Méthode 6 (Reconnaître une rotation)

On considère $f: \mathbb{C} \to \mathbb{C}$ et on cherche a savoir si c'est l'expression d'une rotation.

- 1. Une rotation admet un unique point fixe (sauf celle d'angle 0 [2π], mais elle a peu d'intérêt) donc l'équation z = f(z) doit avoir un unique solution. La solution sera notée ω , c'est l'affixe du centre de la rotation.
- 2. On "calcule" alors $\frac{f(z)-\omega}{z-\omega}$ et on doit trouver $e^{i\theta}$. Alors c'est une rotation de centre Ω et d'angle θ .

Exemple: On considère la transformation du plan complexe définie par $f(z) = \frac{\sqrt{2}}{2}(1+i)z + \frac{2+\sqrt{2}}{2} + i\frac{4-3\sqrt{2}}{2}$. On commence par chercher si f a des points fixes :

$$f(z) = z \Leftrightarrow \frac{\sqrt{2}}{2}(1+i)z + \frac{2+\sqrt{2}}{2} + i\frac{4-3\sqrt{2}}{2} = z \Leftrightarrow 2z - \sqrt{2}(1+i)z = (2+\sqrt{2}) + i(4-3\sqrt{2}) \Leftrightarrow z = 1+2i.$$

Il y a donc bien un unique point fixe Ω d'affixe $\omega=1+2i$

On calcule alors $f(z) - \omega = \frac{\sqrt{2}}{2} \left((1+i)z + 1 - 3i \right)$ et on veut obtenir $f(z) - \omega = e^{i\theta}(z - \omega) = e^{i\theta}(z - 1 - 2i)$. Il faut donc essayer d'identifier. En regardant, le coefficient devant z, on constate que la seule possibilité est d'avoir $e^{i\theta} = \frac{\sqrt{2}}{2}(1+i)$, c'est à dire $\theta \equiv \frac{p}{i}4$ [2π]. Il reste maintenant à vérifier que $\frac{\sqrt{2}}{2}(1+i)(-1-2i) = \frac{\sqrt{2}}{2}(1-3i)$, c'est à dire (1+i)(-1-2i) = 1-3i et c'est bien le cas, on a donc $f(z) - \omega = e^{i\frac{p}{i}4}(z-1-2i)$ et f est bien une rotation de centre Ω et d'angle $\frac{\pi}{4}$.

V. Résolution d'équations complexes

1. Équations de degré deux

Dans le cas des équations de degré 2, on peut trouver les solutions autrement :

Méthode 7

Trouver les racines carrées Pour résoudre $z^2 = a + ib$ (dans le cas où a + ib ne se met pas facilement sous forme polaire cf partie suivante), on pose z = x + iy.

- 1. On identifie partie réelle et partie imaginaires dans l'équation : $x^2 y^2 = a$ et 2xy = b
- 2. On utilise l'égalité des modules dans l'équation qui s'écrit $x^2 + y^2 = \sqrt{a^2 + b^2}$
- 3. Avec ces équations, on trouve facilement x^2 et y^2 .
- 4. On en déduit les signes possibles en utilisant 2xy = b. On trouve 2 solutions.

Exemple: Résoudre $z^2 = 2i$.

On choisit de passer par la forme cartésienne. On pose donc z = x + iy.

1. En identifiant parties réelles et imaginaires ainsi que le module, on obtient

$$\begin{cases} x^2 - y^2 = 0\\ 2xy = 2\\ x^2 + y^2 = 2 \end{cases}$$

- 2. En utilisant la 1ère et la 3ème équation, on a $x^2 = 1$ et $y^2 = 1$, donc $x = \pm 1$ et $y = \pm 1$.
- 3. D'après la 2ème équation, on a xy > 0. On en déduit z = 1 + i ou z = -1 i.

Proposition 2.39

Pour résoudre l'équation $az^2 + bz + c = 0$, on calcule le discriminant $\Delta = b^2 - 4ac \in \mathbb{C}$. L'équation $z^2 = \Delta$ admet deux solutions complexes δ et $-\delta$, les solutions sont donc

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

Démonstration: Comme dans \mathbb{R} , on écrit $az^2 + bz + c = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\delta^2}{4a^2}\right] = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\delta^2}{4a^2}\right] = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\delta^2}{4a^2}\right]$. D'où les solutions.

Exemple: Par exemple l'équation $z^2 - 2z + 2 = 0$ a comme solutions 1 + i, 1 - i.

Remarque: On est capable de résoudre explicitement toute équation de degré 2, alors que ce n'est pas le cas si n est plus grand!

Résolution pratique de $z^n = a$ 2.

Proposition 2.40

Soient θ et $\theta' \in \mathbb{R}$. Soit $n \in \mathbb{Z}^*$.

On rappelle que si $n\theta = \theta'$ [2π], alors $\theta = \frac{\theta'}{n}$ [$\frac{2\pi}{n}$].

Démonstration: Par définition du modulo, $n\theta = \theta'$ [2 π] signifie qu'il existe $k \in \mathbb{Z}$ tel que $n\theta = \theta'$ $\theta' + 2k\pi$ donc en divisant par n, on a qu'il existe $k \in \mathbb{Z}$ tel que $\theta = \frac{\theta'}{n} + \frac{2k\pi}{n}$ ce qui signifie $\theta = \frac{\theta'}{n}$ $[\frac{2\pi}{n}]$.

Méthode 8

Pour résoudre $z^n=a,$ en général, on met a et z sous leur forme polaire $a=re^{i\omega}$ et $z=\rho e^{i\theta},$ puis on identifie alors les modules et arguments (attention aux divisions de modulo 2π !).

Exemple: Résoudre $z^3 = 4\sqrt{2}(1+i)$. On pose $a = 4\sqrt{2}(1+i)$.

- 1. On écrit a sous forme polaire : $a = 8e^{i\frac{\pi}{4}}$.
- 2. On pose $z = \rho e^{i\theta}$ avec $\rho \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$.
- 3. En réécrivant l'équation, on obtient donc $\rho^3 e^{i3\theta} = 8e^{i\frac{\pi}{4}}$.
- 4. On identifie les modules et les arguments (sans oublier le "modulo"!) :

$$\rho^3 = 8$$
 et $3\theta = \frac{\pi}{4}$ $[2\pi]$.

- 5. On résout ces équations : $\rho = \sqrt[3]{8} = 2 \text{ } \underbrace{\text{car } \rho \in \mathbb{R}^+}_{} \text{ et } \theta = \frac{\pi}{12} \quad [\frac{2\pi}{3}].$
- 6. On liste enfin toutes les solutions : $z=2e^{i(\frac{\pi}{12}+2k\frac{\pi}{3})}=2e^{i\pi\frac{1+8k}{12}}$ avec k=0,1 ou 2. Donc $z=2e^{i\frac{\pi}{12}}$ ou $z=2e^{i\frac{9\pi}{12}}=2e^{i\frac{3\pi}{4}}$ ou $z=2e^{i\frac{17\pi}{12}}$. Il y a 3 solutions.

3. Racines n-ième de l'unité

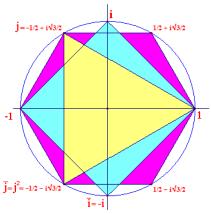
Définition 2.41

On appelle racine n-ème de l'unité tout complexe z vérifiant $z^n = 1$.

Proposition 2.42

Il existe n racines n-ème de l'unité, ce sont les nombres complexes $e^{\frac{2ik\pi}{n}}$ pour $k \in \{0, 1, \dots, n-1\}$. On note \mathbb{U}_n l'ensemble des racines n-èmes de l'unité.

Les racines n-ème de l'unité forment un polygone régulier dans le plan complexe.



Exemple: Les racines de $z^2=1$ sont donc $1=e^{i0}$ et $-1=e^{\frac{2i\pi}{2}}$. Les racines de $z^3=1$ sont $1=e^{i0}$ et $e^{\frac{2i\pi}{3}}$ que l'on note j. Enfin la dernière racine est $e^{\frac{4i\pi}{3}}=j^2=\bar{j}$.

Remarque: Les multiples écritures des racines n-èmes de l'unité.

Selon le contexte, il peut être intéressant d'écrire les racines n-èmes de l'unité d'une façon ou d'une autre.

• Si on note $\omega = e^{\frac{2i\pi}{n}}$, on a $\mathbb{U}_n = \{\omega^0 = 1, \omega, \omega^2, \dots, \omega^{n-1}\}.$

• On a aussi $\mathbb{U}_n = \{e^{\frac{2ik\pi}{n}}, \ k \in \mathbb{Z} \text{ avec } a \leq k < a+n\}$ pour tout $a \in \mathbb{R}$. En effet, chaque élément de l'ensemble est bien solution de $z^n = 1$ et on a bien n racines distinctes. En particulier, si n est impair, on écrit souvent $\mathbb{U}_n = \{e^{\frac{2ik\pi}{n}}, -\frac{n-1}{2} \leq k \leq \frac{n-1}{2}\}$.

Proposition 2.43

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{C}^*$.

Si z_0 vérifie $z_0^n=a$, alors z est solution de $z^n=a$ si et seulement si $z=z_0\omega$ avec ω une racine n-ème de l'unité.

En conséquence, l'équation $z^n = a$ admet n racines complexes de même module.

Démonstration : On a bien
$$\left(\frac{z}{z_0}\right)^n = \frac{a}{a} = 1$$
 d'où le résultat.

Remarque: Pour résoudre $z^n=a$, dans le cas (rare) où on connaît une solution particulière par exemple $z=z_0$, on obtient toutes les solutions en multipliant cette solution particulière par les racines n-ème de l'unité : $z=z_0e^{\frac{2ik\pi}{n}}$ avec $k\in\{0,\ldots,n\}$.