Géométrie et arithmétique 1

Partiel 1 - corrigé

Exercice 1 Soit $E = \mathbb{R}^2$ ou \mathbb{R}^3 muni d'un produit scalaire et soient $u, v \in E$ deux vecteurs.

- 1. (1,5 pts) Rappeler les définitions de la colinéarité et de l'orthogonalité de u et v.
- 2. (2 pts) Montrer que si u et v sont non nuls et orthogonaux alors ils ne sont pas colinéaires.
- 3. (1,5 pts) Enoncer l'inégalité de Cauchy-Schwarz.

Solution : 1. On dit que deux vecteurs $u, v \in E$ sont colinéaires s'il existe $\lambda \in \mathbb{R}$ tel que $u = \lambda v$ ou $v = \lambda u$. On dit que deux vecteurs $u, v \in E$ sont orthogonaux si $\langle u, v \rangle = 0$.

2. Nous allons raisonner par absurde. Supposons que $u,v\in E$ soient deux vecteurs non nuls, colinéaires et orthogonaux. Comme u et v sont colinéaires et $v\neq \vec{0}$, il existe $\lambda\in\mathbb{R}$ tel que $u=\lambda v$. Comme ils sont orthogonaux, nous avons

$$0 = \langle u, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.$$

Mais la condition $v \neq \vec{0}$ implique $||v|| \neq 0$ et la condition $u \neq \vec{0}$ implique $\lambda \neq 0$. Nous avons trouvé la contradiction cherchée.

3. L'inégalité de Cauchy-Schwarz dit que pour tout $u, v \in E$ nous avons

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||.$$

De plus, l'égalité a lieu si et seulement si u et v sont colinéaires.

*

Exercice 2 Nous rappelons que *médiatrice* d'un segment est la droite orthogonale à ce segment et passant par son milieu.

Soient $A \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $B \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ et $C \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ trois points du plan.

- 1. (1 pt) Donner une équation paramétrique de la médiatrice m_{AB} du segment [AB].
- 2. (1,5 pts) Soit $D \in m_{AB}$. Montrer que $\|\overrightarrow{AD}\| = \|\overrightarrow{BD}\|$.
- 3. (1 pt) Donner une équation cartésienne de la médiatrice m_{AC} du segment [AC].
- 4. (1 pt) Trouver le point M d'intersection des médiatrices m_{AB} et m_{AC} .
- 5. (1,5 pts) Montrer que $\|\overrightarrow{AM}\| = \|\overrightarrow{BM}\| = \|\overrightarrow{CM}\|$.

Solution : 1. La médiatrice m_{AB} passe par le milieu P du segment [AB]. Si on considère les points de \mathbb{R}^2 comme des vecteurs, on peut écrire :

$$P = A + \frac{1}{2}\overrightarrow{AB} = \begin{pmatrix} 2\\3 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 0-2\\-1-3 \end{pmatrix} = \begin{pmatrix} 2\\3 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} -2\\-4 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Un vecteur directeur u de la médiatrice m_{AB} est orthogonal au vecteur $\overrightarrow{AB} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$, par exmeple $u = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$. Nous obtenons l'équation paramétrique suivante :

$$m_{AB}: \begin{cases} x = 1 + 4t \\ y = 1 - 2t \end{cases}, t \in \mathbb{R}.$$
 (1)

2. Soit $D \in m_{AB}$. D'après la question précédente, il existe $t \in \mathbb{R}$ tel que $D = \begin{pmatrix} 1+4t\\1-2t \end{pmatrix}$. Nous avons

$$\|\overrightarrow{AD}\|^2 = \left\| \begin{pmatrix} -1+4t\\ -2-2t \end{pmatrix} \right\|^2 = (-1+4t)^2 + (-2-2t)^2 = 5+20t^2,$$

$$\|\overrightarrow{BD}\|^2 = \left\| \begin{pmatrix} 1+4t\\2-2t \end{pmatrix} \right\|^2 = (1+4t)^2 + (2-2t)^2 = 5+20t^2.$$

Nous avons bien $\|\overrightarrow{AD}\| = \|\overrightarrow{BD}\|$.

3. Soit Q le milieu du segment [AC]:

$$Q = A + \frac{1}{2}\overrightarrow{AC} = \begin{pmatrix} 2\\3 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 2\\-2 \end{pmatrix} = \begin{pmatrix} 3\\2 \end{pmatrix}.$$

Le vecteur $\overrightarrow{AC} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ est un vecteur normal à la médiatrice m_{AC} . Comme elle passe par le point Q, nous obtenons l'équation cartésienne suivante :

$$2(x-3) - 2(y-2) = 0,$$

ou après la simplification :

$$m_{AC}: x - y - 1 = 0.$$
 (2)

4. Soit $M \binom{x_0}{y_0}$ le point d'intersection des droites m_{AB} et m_{AC} . Comme $M \in m_{AB}$, l'équation (1) implique que $x_0 = 1 + 4t_0$ et $y_0 = 1 - 2t_0$ pour une certaine valeur $t_0 \in \mathbb{R}$ du paramètre. Comme $M \in m_{AC}$, l'équation (2) implique que $x_0 - y_0 - 1 = 0$. On obtient

$$1 + 4t_0 - (1 - 2t_0) - 1 = 0$$
, d'où $t_0 = \frac{1}{6}$.

Nous obtenons donc

$$x_0 = 1 + 4t_0 = \frac{5}{3}$$
 et $y_0 = 1 - 2t_0 = \frac{2}{3}$.

Le point cherché est $M \begin{pmatrix} 5/3 \\ 2/3 \end{pmatrix}$.

5. De la question précédente, nous savons que M vérifie l'équation paramétrique (1) avec t=1/6. Grâce à la question 2. nous avons

$$\|\overrightarrow{AM}\|^2 = \|\overrightarrow{BM}\|^2 = 5 + 20(t_0)^2 = 5 + 20\left(\frac{1}{6}\right)^2 = \frac{50}{9}.$$

De plus

$$\|\overrightarrow{CM}\|^2 = \left\| \binom{5/3 - 4}{2/3 - 1} \right\|^2 = \left(-\frac{7}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 = \frac{50}{9}.$$

Nous avons donc $\|\overrightarrow{AM}\| = \|\overrightarrow{BM}\| = \|\overrightarrow{CM}\|$.

Exercice 3 Soient
$$A \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $B \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$, $C \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ et $D \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ quatre points de l'espace.

- 1. (0,5 pt) Vérifier que les trois points A, B et C ne sont pas alignés.
- 2. (1,5 pts) Donner une équation paramétrique du plan \mathcal{P} passant par ces trois points; puis une équation cartésienne.
- 3. (1 pt) Donner une équation paramétrique de la droite passant par le point D et orthogonale au plan \mathcal{P} .
- 4. (1 pt) Donner la distance du point D au plan \mathcal{P} .

Solution : 1. Calculons les vecteurs \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{AB} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

Ces deux vecteurs ne sont pas colinéaires d'où les points A, B, C ne sont pas alignés.

2. Les points A, B, C n'étant pas alignés, ils définissent un plan \mathcal{P} dans \mathbb{R}^3 . Ce plan passe par le point A et admet \overrightarrow{AB} et \overrightarrow{AC} comme vecteurs directeurs. On obtient l'équation paramétrique suivante :

$$\mathcal{P}: \left\{ \begin{array}{l} x = -1 + 3t \\ y = 0 - s + t \\ z = 1 + s + 2t \end{array} \right. s, t \in \mathbb{R}.$$

Pour donner une équation cartésienne de \mathcal{P} , nous calculons un vecteur normal à ce plan :

$$\vec{n} = \overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}.$$

Utilisant ce vecteur normal et le fait que $\mathcal P$ passe par le point A, nous obtenons l'équation

$$-3(x+1) + 3y + 3(z-1) = 0$$

ce qui donne après simplification

$$\mathcal{P} : -x + y + z - 2 = 0.$$

3. Le vecteur \vec{n} trouvé à la question précédente est un vecteur directeur de la droite cherchée. Comme elle passe par le point D, on obtient l'équation paramétrique suivante :

$$\begin{cases} x = 1 - 3\lambda \\ y = -2 + 3\lambda & \lambda \in \mathbb{R}. \\ z = 3\lambda \end{cases}$$

4. La distance d'un point $M \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ par rapport à un plan π d'équation cartésienne ax + by + cz + d = 0 s'exprime par la formule

$$dist(M,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Nous obtenons

$$dist(D, \mathcal{P}) = \frac{|-1-2+0-2|}{\sqrt{(-1)^2+1^2+1^2}} = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}.$$

- 1. (1,5 pts) Trouver une équation cartésienne du plan \mathcal{P} qui contient la droite (AB) et qui est parallèle à l'un des plans d'équation x=0, y=0 ou z=0.
- 2. (1 pt) Donner une équation paramétrique du plan \mathcal{P}' dont un vecteur générateur est orthogonal au plan \mathcal{P} et qui contient la droite (AB).
- 3. (1 pt) Donner une équation cartésienne du plan \mathcal{P}' .
- 4. (1,5 pts) Donner une équation cartésienne et une équation paramétrique de la droite (AB).

Solution : 1. Un plan parallèle au plan d'équation x=0 admet pour équation cartésienne x-a=0. De même, un plan parallèle à l'un des plans y=0 ou z=0 admet pour équation cartésienne y-b=0 ou z-c=0. On cherche un tel plan contenant les points A et B. On trouve

$$\mathcal{P}: x - 10 = 0.$$

2. Soit $\vec{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ un vecteur normal au plan \mathcal{P} . Le plan \mathcal{P}' admet \vec{n} et $\overrightarrow{AB} = \begin{pmatrix} 0 \\ -1 \\ -3 \end{pmatrix}$ comme vecteurs directeurs.

De plus, il passe par le point A. Nous obtenons l'équation paramétrique suivante

$$\mathcal{P}': \left\{ \begin{array}{l} x = 10 + s \\ y = 1 - t \\ z = 5 - 3t \end{array} \right. s, t \in \mathbb{R}.$$

3. Calculons un vecteur normal au plan \mathcal{P}' :

$$\vec{m} = \vec{n} \wedge \overrightarrow{AB} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}.$$

Le plan \mathcal{P}' est le plan passant par A de vecteur normal \vec{m} . Nous obtenons l'équation cartésienne :

$$-3(y-1)+(z-5)=0$$
 ou après simplification $3y-z+2=0$.

4. La droite (AB) est contenue dans les plans sécants \mathcal{P} et \mathcal{P}' , d'où l'équation cartésienne

$$(AB) : \begin{cases} x - 10 = 0 \\ 3y - z + 2 = 0. \end{cases}$$

La droite (AB) est aussi la droite passant par A de vecteur directeur \overrightarrow{AB} d'où l'équation paramétrique

$$(AB): \begin{cases} x = 10 \\ y = 1 - \lambda \\ z = 5 - 3\lambda \end{cases} \lambda \in \mathbb{R}.$$