

Année universitaire 2016-2017

Site: $\boxtimes Luminy \ \boxtimes St$ -Charles $\square St$ -Jérôme $\square Cht$ -Gombert $\boxtimes Aix$ -Montperrin $\square Aubagne$ -Satis Sujet session: $\boxtimes 1$ er semestre - $\square 2$ ème semestre - $\square Session 2$ Durée de l'épreuve: 2h Examen de: $\boxtimes L1$ / $\square L2$ / $\square L3$ - $\square M1$ / $\square M2$ - $\square LP$ - $\square DU$ Nom diplôme: Licence IM Code Apogée du module: SMI1U3T Libellé du module: Géométrie et arithmétique 1 Documents autorisées: $\square OUI$ - $\boxtimes NON$ Calculatrices autorisées: $\square OUI$ - $\boxtimes NON$

Questions de cours. Dans cette partie $\mathbb{K} = \mathbb{R}$, \mathbb{C} ou \mathbb{Q} .

1. Soient $P, Q \in \mathbb{K}[X]$. Montrer que le degré de PQ est la somme des degrés de P et Q. On se limitera au cas $P, Q \neq 0$.

Soient $n \geq 0$ et $m \geq 0$ les degrés de P et Q respectivement. Posons $P = \sum_{i \geq 0} a_i X^i$, $Q = \sum_{j \geq 0} b_j X^j$ et $PQ = \sum_{k \geq 0} c_k X^k$, où $a_n \neq 0$, $a_i = 0$ si i > n, $b_m \neq 0$, $b_j = 0$ si j > m et $c_k = \sum_{i+j=k} a_i b_j$. On remarque que si k = i+j > n+m on doit avoir i > m ou j > m et donc $a_i = 0$ ou $b_j = 0$. Dans tous les cas, chaque terme de la somme $\sum_{i+j=k} a_i b_j$ est nul ce qui montre $c_k = 0$ pour k > n+m et $\deg(PQ) \leq m+n$. Le même raisonnement montre que dans la somme $\sum_{i+j=n+m} a_i b_j$ le seul terme non nul est $a_n b_m$, donc $c_{n+m} = a_n b_m \neq 0$ par hypothèse et $\deg(PQ) = m+n$.

2. Donner la définition de polynôme irréductible de $\mathbb{K}[X]$. Dire quels sont les polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.

Un polynôme non nul de $\mathbb{K}[X]$ est irréductible dans $\mathbb{K}[X]$ s'il n'est pas inversible (à savoir si et seulement s'il n'est pas constant, ou encore si et seulement si son degré est positif) et pour tous $A, B \in \mathbb{K}[X]$ tels que P = AB l'un parmi A et B a degré 0.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont ceux de degré 1. Les polynômes irréductibles de $\mathbb{R}[X]$ sont ceux de degré 1 et ceux de degré 2 ayant discriminant négatif.

3. Rappeler la définition de racine n-ième d'un nombre complexe w.

Soit $n \ge 1$ un entier et soit $w \in \mathbb{C}$. On appelle racine n-ième de w tout nombre complexe z tel que $z^n = w$.

Exercice 1. Soit $P \in \mathbb{C}[X]$ le polynôme $P(X) = X^3 + (-1 + 6i)X^2 - (13 + 4i)X - 11 - 10i$.

1. Effectuer la division de P par (X + 1).

On
$$a P = (X+1)(X^2 + (-2+6i)X - (11+10i)).$$

2. Trouver les racines carrées de 3+4i. En déduire les racines carrées de 12+16i.

Les racines carrées z = x + iy de 3 + 4i doivent satisfaire :

$$\begin{cases} x^2 - y^2 &= 3\\ x^2 + y^2 &= \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5\\ 2xy &= 4 \end{cases}$$

ce qui donne $x^2 = 4$ et $y^2 = 1$. En tenant compte du fait que x et y ont le même signe, on en déduit les racines carrées de 3 + 4i: $\pm (2 + i)$. Puisque $12 + 16i = 2^2(3 + 4i)$, les racines carrés de 12 + 16i sont $\pm 2(2 + i) = \pm (4 + 2i)$.

3. Trouver les racines de P.

Les racines de P sont l'union de celle de X+1, à savoir -1, et celles de $Q=X^2+(-2+6i)X-1$. Pour trouver les deux racines de Q calculons d'abord son discriminant : $\Delta=(-2+6i)^2+4(11+10i)=12+16i$. D'après le point précédent, les racines carrées de Δ sont $\pm(4+2i)$. Les racines de Q sont alors [(2-6i)+(4+2i)]/2=3-2i et [(2-6i)-(4+2i)]/2=-1-4i.

Exercice 2.

1. Déterminer l'écriture algébrique des racines sixièmes de l'unité.

Les racines sixièmes de l'unité sont : $e^{0i} = 1$, $e^{2i\pi/6} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $e^{4i\pi/6} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $e^{6i\pi/6} = -1$, $e^{8i\pi/6} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $e^{10i\pi/6} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$.

2. Décomposer $X^6 - 1$ en produit de polynômes irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

En utilisant le fait que les racines complexes de X^6-1 sont les racines sixièmes de l'unité, on obtient la décomposition de X^6-1 en facteurs irréductibles de $\mathbb{C}[X]$:

$$X^6-1=(X-1)(X-\frac{1}{2}-\frac{\sqrt{3}}{2}i)(X+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(X+1)(X+\frac{1}{2}+\frac{\sqrt{3}}{2}i)(X-\frac{1}{2}+\frac{\sqrt{3}}{2}i).$$

En multipliant ensemble les facteurs correspondant aux racines conjuguées, on obtient la décomposition en facteurs irréductibles de $\mathbb{R}[X]$:

$$X^{6} - 1 = (X - 1)(X^{2} - X + 1)(X + 1)(X^{2} + X + 1).$$

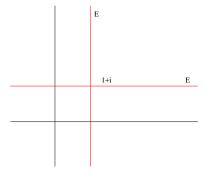
Exercice 3. On considère la rotation $f: \mathbb{C} \longrightarrow \mathbb{C}$ définie par f(z) = iz + 2.

1. Déterminer son centre, angle de rotation et facteur de dilatation.

Le centre est le point du plan d'affixe z satisfaisant z=f(z)=iz+2. L'affixe du centre est donc $z=\frac{2}{1-i}=1+i$. L'angle de la rotation est $\operatorname{Arg}(i)=\frac{\pi}{2}$.

2. Soit E l'ensemble défini par la condition $\text{Im}((z-(1+i))^2)=0$. Décrire E et le représenter graphiquement dans le plan complexe.

En posant z=x+iy et en développant le carré on a $(z-(1+i))^2=[(x-1)+i(y-1)]2=[(x-1)^2-(y-1)^2]+2i(x-1)(y-1)$. Sa partie imaginaire est nulle si et seulement si x=1 ou y=1. L'ensemble E est donc constitué de l'union de la droite horizontale et de la droite verticale passant par le point d'affixe 1+i, centre de la rotation.



3. Déterminer l'image f(E) de l'ensemble E par la similitude f.

Puisque l'image d'une droite par une rotation (et plus généralement par une similitude) est encore une droite, en tenant compte du fait que 1+i est le point fixe de la rotation et que le vecteur d'inne droite est tourné d'un angle de $\frac{\pi}{2}$, f(E) = E et f échange les deux droites.

2

Exercice 4. Dans \mathbb{R}^3 , considérons deux plans \mathcal{P}_1 et \mathcal{P}_2 d'équation cartésienne x-y=0 et x+y+z-1=0 respectivement.

1. Leur intersection est une droite \mathcal{D}_1 dont on donnera une équation paramétrique et un vecteur directeur.

La droite est formée par les points satisfaisant le système cartésien

$$\begin{cases} x - y = 0 \\ x + y + z - 1 = 0 \end{cases}$$

En prenant par exemple x comme paramètre on obtient l'équation paramétrique de \mathcal{D}_1

$$\left\{ \begin{array}{l} x=t \\ y=t \\ z=1-2t \end{array} \right. , \ t \in \mathbb{R}$$

d'où on déduit un vecteur directeur $u = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$.

2. Donner une équation cartésienne du plan \mathcal{P}_3 orthogonal à \mathcal{D}_1 et passant par $A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathcal{D}_1$.

L'équation cartésienne de \mathcal{P}_3 est de la forme ax+y+cz+d=0 où le vecteur $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur non nul et orthogonal au plan, qu'ici on peut choisir être égal à u: x+y-2z+d=0. Le point A satisfait cette équation si et seulemnt si d=2. L'équation cartésienne de \mathcal{P}_3 est donc x+y-2z+2=0.

3. Déterminer un point B de $\mathcal{P}_1 \cap \mathcal{P}_3$ et un point C de $\mathcal{P}_2 \cap \mathcal{P}_3$ tels que $A \neq B, C$. Le point B doit satisfaire le système

$$\begin{cases} x - y = 0 \\ x + y - 2z + 2 = 0 \end{cases}$$

et on peut prendre $B\begin{pmatrix}1\\1\\2\end{pmatrix}$. De même le point C doit satisfaire le système

$$\begin{cases} x + y + z - 1 = 0 \\ x + y - 2z + 2 = 0 \end{cases}$$

et on peut prendre $C \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

4. Calculer le cosinus de l'angle entre \overrightarrow{AB} et \overrightarrow{AC} (sa valeur absolue est le cosinus de l'angle θ entre les plans \mathcal{P}_1 et \mathcal{P}_2 , avec $0 < \theta \leq \pi/2$).

$$On\ a\ \overrightarrow{AB} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}\ et\ \overrightarrow{AC} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}.\ Les\ cosinus\ est\ donn\'e\ par\ \frac{\overrightarrow{AB}\cdot\overrightarrow{AC}}{\|\overrightarrow{AB}\|\|\overrightarrow{AC}\|} = \frac{1\times 1+1\times (-1)+1\times 0}{\sqrt{1^2+1^2+1^2}\sqrt{1^+(-1)^2+0^2}} = \frac{1\times 1+1\times (-1)+1\times 0}{\sqrt{1^2+1^2}\sqrt{1^+(-1)^2+0^2}} = \frac{1\times 1+1\times (-1)+1\times (-1)+1\times$$

0. Les plans sont donc perpendiculaires (leurs vecteurs normaux sont, par ailleurs, orthogonaux).