Géométrie et Arithmétique

DEVOIR MAISON 3 (7/11/2016)

Exercice 1 Mettre sous forme algébrique les nombres complexes suivants :

$$z_1 = \sqrt{2}e^{i\frac{\pi}{4}}, \qquad z_2 = \pi e^{-i\frac{5\pi}{6}+1}, \qquad z_3 = \frac{(1-\sqrt{3})e^{-i\frac{\pi}{3}}(1+\sqrt{3})e^{-i\frac{\pi}{6}}}{2e^{i\frac{5\pi}{4}}}, \qquad z_4 = \frac{1}{1+e^{i2\theta}}$$

Exercice 2

1. Mettre sous forme trigonométrique et exponentielle les nombres complexes suivants :

$$z_1 = 3 + 3i,$$
 $z_2 = -\frac{4}{3}i,$ $z_3 = \sqrt{3},$ $z_4 = \frac{4i}{\sqrt{3} + i},$ $z_5 = (i + \sqrt{3})\pi i.$

2. Donner la forme exponentielle et algébrique du nombre complexe $\frac{z_1^3 z_4^2}{z_5}$.

Exercice 3

1. Donner la forme exponentielle et algébrique des nombres complexes suivant :

$$\left(\frac{1-\sqrt{3}i}{2}\right)^{2016}$$
, $(1+i)^{2017}$.

2. Soient $p, q, n \in \mathbb{Z}$. Montrer que si 2q divise pn - a (c'est à dire $pn \equiv a \mod 2q$), avec $a \in \mathbb{Z}$, alors

$$\left(e^{i\frac{p}{q}\pi}\right)^n = e^{i\frac{a}{q}\pi}.$$

Montrer que l'on peut choisir $a \in \{0, 1, \dots, 2q - 1\}$.

- 3. Pour quelles valeurs de θ le nombre complexe $e^{i\theta} \in \mathbb{R}$? Pour quelles valeurs de θ le nombre complexe $e^{i\theta} \in i\mathbb{R}$?
- 4. Déterminer les valeurs de $n \in \mathbb{Z}$ pour lesquelles le nombre $(\sqrt{3} + 1)^n$ est réel? Pour quelles valeurs de $n \in \mathbb{Z}$ il est imaginaire pure?

Exercice 4 Calculer le module et un argument des nombres complexes suivants :

$$z_1 = \frac{\tan(\alpha) - i}{\tan(\alpha) + i}, \qquad z_2 = \frac{1}{1 + i\tan(\alpha)}$$

Exercice 5 Utiliser la formule du binôme de Newton pour montrer que

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$